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Figure 1: (top) The
geometrical model.
(bottom) CPU time
devoted to searching
and building up interpo-
lation matrices between
the network and the
bulk volume (white
columns) compared to
solution time (black
columns) for decreasing
values of the mesh size.

Background and motivations. The forthcoming exascale comput-
ing infrastructure will open new possibilities to scientific computing.
Problems that are not directly solvable today, because they require exces-
sive computational efforts and are thus addressed using reduced model-
ing techniques, will soon fall in the range of direct simulations using exas-
cale computers. We are particularly interested to consider the numerical
approximation of partial differential equations on domains with complex
shape. In the range of the Department of Energy mission, a typical ex-
ample is the computational analysis of flows through fractured media,
involving irregular and extended fracture systems. Another application
is the study of materials with inclusions characterized by heterogeneous
physical properties or shapes. The present computational approaches to
address these problems are based on homogenization techniques or mul-
tiscale Galerkin projections. The former family of methods has proved
to be very effective when a clear scale separation is observed between
the macroscopic resolution scale and the microscale where fractures or
inclusions are observed, see [6, 5] or [2, 7, 1] for a selection of recent
works. A secondary assumption requires that the microscale features a
regular and periodic pattern. These conditions are not always verified
in realistic applications, where the interplay of multiple and overlap-
ping spatial scales may dominate the behavior of the system. The latter
methods, namely multiscale or multiresolution techniques, are very suc-
cessful in addressing these issues [10, 3, 8, 9]. However, when applied
to the exascale computing framework, these methods may feature lim-
itations in achieving extreme levels of concurrency. This is due to the
fact that these techniques are based on the interaction between coarse
grid solvers, usually defined by means of multiscale basis functions, and
local solvers aiming to capture the shape of problem dependent basis
functions on local sub-domains. An expert application of load balancing techniques is usually re-
quired to efficiently implement such schemes on high performance computing platforms. We believe
that exascale computers will enable scientists to override these drawbacks by simply resorting to
direct simulations of the problems at hand. However, as discussed below, the interplay between
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numerical solvers and computational geometry will assume a paramount importance in the design
and implementation of this new class of physical simulators.

Algorithms. In our view, the most appropriate computational framework to address problems
with a large number of inclusions is the family of Partition of Unity (PUM) or eXtended Finite
Element Methods (XFEM) [14, 13, 4, 11]. Two distinctive features of these methods are the
following: (i) the ability to build the approximation on meshes which may be partially independent
of the geometry of the problem domain; (ii) the ability of incorporating any special function of
interest into the construction of the approximation. We are particularly interested in the new
computational capabilities introduced by the former property, which allows to shift the definition
of geometrical details of the problem from the mesh to the space of problem parameters. In other
words, the topology of the inclusions now becomes an independent entity that complements the
dataset of problem parameters. This new setting facilitates the treatment of extremely complex
configurations, but opens new unexplored issues at the level of computational geometry. More
precisely, the implementation of PUM/XFEM solvers for problems with complex configurations of
inclusions requires to determine and organize the intersection of two geometric structures. One is
the computational mesh relative to the finite element solver, which may be in this case a quasi-
uniform partition of the whole domain where the problem is defined. The other is a large data
structure describing the topology of the inclusions. The application of efficient search algorithms
to map the inclusions onto the computational mesh, as well as the definition of appropriate data
structures, become fundamental aspects of the problem, in order to maximize the locality of discrete
algebraic operators and minimize the communication between processors. Figure 1 shows the
issues arising if these aspects are not addressed efficiently, when a scalar FEM solver is applied to
analyze the interaction between a homogeneous porous medium and a network of one-dimensional
channels. At the algebraic level, the introduction of the additional degrees of freedom characteristic
of PUM/XFEM gives rise to large sparse systems with block structure, where each block accounts
for one individual entity in the dataset of inclusions. High level of concurrency could be achieved
by simplifying or cutting off the long range interactions between inclusions, because the convex
hull of the global matrix would be progressively reduced. In this respect, we see some analogies
of this problem with the quantification of forces between a many body system. We believe that
ideas coming from the fast multipole method, [12], can help with designing algorithms to account
for large numbers of inclusions.

Software. At the level of available software libraries, the computational mechanics community is
aware of a substantial gap in the integration of computational geometry with simulation tools. As
an example, isogoemetric analysis is rapidly proceeding towards the unification of computer aided
design and finite element analysis. We believe that other directions of research are equivalently in-
teresting, but still unexplored. We propose here to strengthen the interaction of algorithms devoted
to searching and interpolation with finite element open source packages. Ongoing projects that are
proceeding in this directions, such ad Getfem++ (download.gna.org/getfem/html/homepage/)
and Fenics (fenicsproject.org/) are increasing their popularity among users. In our opinion, the
most complete computational geometry library currently available to the public is the Computa-
tional Geometry Algorithm Library, CGAL, (www.cgal.org/). Still many steps have to be taken
to achieve a full and efficient integration of these tools into finite element solvers.
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